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Abstract

Our research lies at the intersection of autonomous driving, particularly autonomous
racing, and reinforcement learning, a machine learning paradigm where agents seek
to maximize their reward in an environment. Agents are incentivized with rewards
which define what the agent should do, and it is their responsibility to discovering
behaviors which result in maximum cumulative reward. As such, reinforcement
learning differs from supervised and unsupervised learning since the agent collects
its own data through environment exploration. In many ways autonomous racing
is a simpler domain than street-legal driving, but is well suited for reinforcement
learning research. We began with AWS Deepracer, a toy example with both online
and real racing competitions. After early success in this domain, we became the
first North American team to join Roborace, an autonomous racing series using
full-size electric race cars. While AWS provided their own reinforcement learning
environment and training infrastructure, we built our own around Roborace’s
driving simulator, which is much more realistic than AWS Deepracer’s. Our
environment is OpenAI gym compliant making it compatible with many public
reinforcement learning frameworks. In numerous baseline experiments, we prove
that a agent can learn to race without any prior knowledge of driving or racing in
this sophisticated environment.

1 Introduction

Reinforcement learning is a learning paradigm where agents explore and exploit the environments
they are in to maximize their cumulative reward. Rather than instructing the agent how to receive the
reward, reinforcement learning agents must interact with their environment and engage in behavior
discovery. This lack of explicit instruction has lead to incredible artificial intelligence achievements
in robotics [OpenAI et al., 2018] [OpenAI et al., 2019] and game playing [Bansal et al., 2017] [Silver
et al., 2017] [Mnih et al., 2013b].

Given the domains that reinforcement learning has shown success in, we have decided to explore
its potential in autonomous racing which lies both in the field of robotics and competitive game
play. This has not been done at great depth, and we are far from an agent achieving superhuman
performance in a real race car despite success in simplistic virtual racing environments [Fuchs et al.,
2020b] [Schwarting et al., 2020].

First, however, we began competing AWS DeepRacer competitions. Compared with similar racing
contests, such as ones proposed by Nvidia, DeepRacer is a simplistic environment designed to engage
users that are unfamiliar with autonomous driving or reinforcement learning. DeepRacer is a fully
managed pipeline with most all of the training infrastructure abstracted from users. This leaves
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little room for modification including the choice of learning algorithm which is Proximal Policy
Optimization [Schulman et al., 2017]. The AWS DeepRacer environment provides many features to
the agent such as speed, position, distance from the center lines, and other information relevant to
the agent. In this simplified setting, we designed a complicated reward function, considering many
information mentioned above. After several iterations, we achieve top-10% of a monthly scoreboard,
inspiring us to further our work in other domains.

Roborace was our next autonomous racing domain. We constructed a fully functional reinforcement
learning pipeline around the simulator they provided, incorporating many domains of data science
including systems, machine learning, and human-centered data science. Unlike many public reinforce-
ment learning environments which are created specifically for reinforcement learning research, ours
is built around a simulator designed for autonomous racing development. In teaching a car how to
race itself, we engineered visual features for the agent, applied state-of-the-art reinforcement learning
algorithms, monitored training with custom analytical tools, and containerized our environment for
automated deployment and distributed training.

2 Related Work

2.1 Roborace & Virtual Racing Simulators

Roborace is one of the first global championships for full-size autonomous race cars, and our capstone
team was the first U.S. team to join the series. Roborace builds and owns the vehicles, software-
in-the-loop (SIL) and hardware-in-the-loop (HIL) simulators, and a base stack to drive the race car
autonomously. Teams are responsible for improving the driving capabilities of the vehicle to navigate
increasingly difficult autonomous racing challenges with the hope of wheel-to-wheel competitive
reason at the end of Season Beta. Currently, Roborace teams overwhelmingly use classical controls
in their vehicles rather than approaching it as an artificial intelligence problem.

CARLA is an open-source simulator for autonomous driving research used primarily for urban
environments and street-legal driving. Roborace provides teams with a custom, CARLA-based
[Dosovitskiy et al., 2017] SIL simulator which has custom maps of a variety of real-life racetracks.
This simulator was built to run on Linux desktops and with an emphasis on accurate physics and
vehicle dynamics rather than scalability or compatibility with machine learning applications.

DeepRacer [Balaji et al., 2019] is a platform developed by AWS that provides an end-to-end frame-
work for deploying reinforcement learning algorithms to learn an agent that can autonomously
drive a 1/18th scale race car. The platform simplifies the RL algorithms’ experimentation process
by decoupling the policy update from the model rollouts, which significantly helps in scaling the
experiments. The creators have also demonstrated that the learned policy from the virtual simulator
can be easily transferred to a real-world autonomous race car without expert relabeling, real-world
data, or expensive preprocessing. This is largely due to the relative simplicity of the environment.

TORCS, The Open Racing Car Simulator, is another example of an open-source car racing simulator
that provides realistic physics engine and accurate car dynamics. Simulated Car Racing Championship
[Loiacono et al., 2013] builds on the TORCS for an international competition where the goal is to
develop autonomous racing agents.

2.2 Reinforcement Learning & Autonomous Racing

A recent and promising example of success in autonomous racing using reinforcement learning was
achieved in the video game Gran Turismo Sport [Fuchs et al., 2020a]. Researchers built a custom
reinforcement learning environment and trained an agent to play the video game at super-human
performance, besting the times 50,000 human players in a solo race. This success, however, relied
on unrealistic information which told the agent the exact distance to the edge of the track at various
angles rather than using data from a camera, LiDAR, or radar sensor like real autonomous vehicles
would use. The learned trajectory was described by human experts as being overly risky and only
possible due to unrealistic precision.

The Gran-Turismo Sport agent involved only one vehicle on the track at once, however. In contrast,
the work presented by [Schwarting et al.], the authors can learn policy to compete with two-player
settings with a model-based approach. This work’s primary contribution is the ability to learn a
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Multi-agent RL policy with just raw-image observations. The model can do so by learning a world
model from the ground-truth examples and predicting the opponent’s actions in the latent space.
Further, it optimizes the agent’s behavior by imagined-self play instead of executing the actions in
the real world.

One of the earlier successful works of applying Deep RL on Autonomous driving is [Wang et al.,
2018]. The authors trained an RL agent in the TORCS simulator that provides various sensor inputs
instead of raw images. The authors had to carefully select a set of sensor inputs and design a reward
function for the RL algorithm to work. As the agent’s actions are continuous, like steering angle,
acceleration, and braking, policy-based RL approaches are more suitable than value-based strategies.
Therefore, the authors have used DDPG. In a similar work [Ganesh et al., 2016], authors have
employed DQN for training an RL agent on the TORCS simulator.

2.3 Reinforcement Learning Algorithms

Recent approaches have succeeded in learning control policies from high-dimensional sensory data.
One particular example is an RL agent successfully learning to play Atari games given just the
visual inputs [Mnih et al., 2013a]. This model was trained with Deep Q-learning (DQN) which is a
model-free, off-policy algorithm. And it inspires us to learn race car’s control inputs solely based on
the camera feed we receive from the simulator.

Proximal Policy Optimization [Schulman et al., 2017], used by AWS DeepRacer, which builds upon
the data efficiency and reliable performance of Trust Region Policy Optimization (TRPO) [Schulman
et al., 2015], but it does so with only first-order optimizations. Traditional policy gradient approaches
perform one gradient update per data sample while PPO can perform minibatch updates. One of the
drawbacks of TRPO is that KL divergence in TRPO’s objective function is an added constraint and
complexity while making the training unstable. On the other hand, PPO forces the policy updates
to be conservative in case they diverge too far away from the current policy. Even though PPO
is data-efficient, on-policy RL methods typically need new data samples for each gradient step.
Furthermore, as the task complexity increases, more gradient steps and samples per each step are
needed making these prohibitively expensive. Off-policy methods that use prior experience, such as
Deep Deterministic Policy Gradients (DDPG) [Li et al., 2019], can suffer from brittle convergence
and hyperparameter sensitivity for problems with continuous state and action space. [Haarnoja et al.,
2018]

Soft Actor-Critic is an off-policy method that maximizes entropy to provide greater sample efficiency
than on-policy methods while also providing stable convergence properties. SAC has shown to
provide good results on very complex, high-dimensional tasks, and therefore it’s the algorithm of our
choice for this work.

2.4 Asynchronous RL Framework

Asynchronous Gradient Descent for optimization of Deep RL networks has shown promising results
in [Mnih et al., 2016]. This work trains several RL algorithms, on-policy, off-policy, value-based
and policy-based methods, asynchronously on multiple CPU-threads of a single machine. Training
on different parts of the environment parallelly makes all the updates to the parameter-server less
correlated to each other compared to a single agent’s updates. This parallelism improves the training
stability and reduces the training time. On a similar approach, we, too, train our model on a distributed
architecture on AWS.

3 Methodology

In this section, we will introduce the methods how we set up the environment for Reinforcement
Learning, process the data, and train state-of-the-art models.

3



3.1 Environment Setting

3.1.1 Racing Simulator & Customized Reinforcement Learning Environment

Arrival Simulator Arrival, a commercial Roborace team, provides other team will access to their
racing simulator which is CARLA-based. The simulator includes numerous different race tracks
modeled off of their real-life counterparts. Virtual sensors, including IMU, camera, and LiDAR, are
used in the simulator to provide the vehicle access to perception features.

To perform reinforcement learning, we needed to send actions, such as steering and acceleration
requests, to the environment and then receive observations and rewards from the environment. To do
so, we built UDP interfaces to send actions to the environment and used a combination of TCP and
UDP interfaces to receive sensor and other observation data from the simulator. Another component
to learning is automation, and we did so by building a Websocket interface that communicates with
the simulator’s API and integrating this into our environment.

Custom Reinforcement Learning Environment Because we did not have access to the source
code of the simulator, we had to build our custom reinforcement learning environment from nearly
scratch. Using the interfaces described above, we created our environment by discretizing our
environment into steps involving an action being taken followed by an observation being received.
We modeled the structure of this environment after OpenAI’s Gym toolkit [Brockman et al., 2016]
primarily to become compatible with a variety of reinforcement learning frameworks. To accomplish
this, we implement several common functions of an environment, make(), reset(), and step() by
encapsulating the primitive simulator. Then we have well-defined state space, observation space, and
action space. Its structure is shown in Figure 1.

Figure 1: Structure of our Reinforcement Learning Environment.

3.1.2 Coordinate System & Episode Termination

Global Coordinate System (GCS) allows every location on the earth to be described in terms of (x, y,
z) coordinates. The (x, y) coordinate are w.r.t to a location defined off the coast of Western Africa,
and the z dimension is w.r.t to the center of the earth. For our use case, it’s challenging to work with
GCS. We are only concerned about a small geographical region limited to the racetrack, and GNU
coordinates differ at the 4th decimal place for the entire racetrack.

An alternative to the Global Coordinate System is the East, North, Up (ENU) Local Coordinate
system, Figure 2. The ENU system is more suited for tracking coordinates in a small geographical
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region where we can approximate the earth’s curvature to a flat surface tangential to the earth. Local
ENU system is far more intuitive than GCS, and distances can be easily expressed as a euclidean
distance in meters. Therefore, racetrack coordinates are represented in the ENU system where the
reference point is an arbitrary point close to the racetrack.

Figure 2: ENU coordinate system with respect to the GCS or Earth-Centered Earth-Fixed (ECEF)
system

The data that we receive from the simulator is described in the previous section in the Table 2. The
simulator tracks the car’s location in the GCS, and we convert that to the ENU system. This helps us
in estimating the reward, imitating expert trajectories, or detect racetrack excursions.

While training our RL agent, we want to prevent training on episodes that are suboptimal or incorrect.
Therefore we terminate the episode if the car is taking too long to complete one loop, get stuck, or go
off the track. We detect if the car has gone off the track by first plotting the track’s outer and inner
edges based on the ENU coordinates. If any of the wheels go outside the outer edge or inside the
inner edge, we terminate the episode.

3.1.3 Basic Feature Processing

With well-defined observation space, we can obtain 30 dimensions of raw data from the simulator, as
listed in Table 1. Although the information is truly informative, the underlying pattern may be hard
to capture by a neural network model. Thus we process the data every time when we observe.

Dimension Data

0,1,2 Steering, Gear, Mode
3,4,5 Velocity
6,7,8 Acceleration
9,10,11 Angular Velocity
12,13,14 Yaw, Pitch, Roll
15,16,17 Location Coordinates (x, y, z)
18,19,20,21 Rpm (per wheel)
22,23,24,25 Brake (per wheel)
26,27,28,29 Torq (per wheel)

Table 1: Original Input Format.

We process the data in a way such that we can significantly reduce the total dimension. We list our
processed data format as in Table 2. From the perspective of information, the newly calculated feature
is definitely less informative than before. However, we discard some rarely used variables (almost
unchanged height of a car) and average some information among 4 wheels.

By this operation, we reduce almost 2/3 of the data dimension, while we keep enough data to analyze
and do basic driving. Still, it is noteworthy that if we need the car to learn a much higher level of
driving skill, we may consider a better method to process the discarded data.

3.1.4 Visual Features - VAE

We encode image data captured by onboard camera with variational autoencoder proposed in [Kingma
and Welling, 2014]. As shown in Figure 3, the model encodes the given input image x into latent
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Dimension Data

0,1,2 Steering, Gear, Mode
3 Normalized Velocity
4 Normalized Acceleration
5 Normalized Angular Velocity
6 Yaw
7,8 Location Coordinates without z
9 Average Rpm (per wheel)
10 Average Brake (per wheel)
11 Average Torq (per wheel)

Table 2: Processed Input Format.

Figure 3: Variational Autoencoder Architecture

vector e(x) of reduced dimension, then it decodes the hidden vector to reconstruct image d(e(x)).
The main purpose of the model is to find the best encoder-decoder pair to maximize the embedded
information and minimize the reconstruction error after decoding, that is

(e∗, d∗) = argminL(x, d(e(x)))

In our project, we use Euclidean loss and latent vector of 16 dimensions to generate the visual feature
vector. We first deploy our VAE on artificial projected images of road boundaries. Compared with
the left input image shown in left half in Figure 4, the right reconstructed image effective learns
the road boundaries, which demonstrates the few information loss in the latent vector. To transfer
the model to the much more complex real racing environment, we crop the top part of the image to
reduce distraction from irrelevant information like sky or sunlight so that to make neurons focus on
learning the track shape and boundary. The final result is shown in right half of Figure 4.
The 16-dimension latent vector is used as visual feature input in our reinforcement learning agent.

Figure 4: Image Reconstruction

3.1.5 Reward Function

We have designed an utterly complicated reward function back in our journey for AWS DeepRacer
Contest which rewarded our agent in many ways such as being near the center of the track. We
learned, however, that more desirable behaviour emerges even with simplistic incentives. Our goal
is an agent that can complete laps in minimal time. Because of the sparsity of lap completion, we
instead reward progression down the track.
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Thus we designed a reward function as

Reward = Ccenter ∗ (rprogress + rspeed)− Poob
, where

rprogress = indexcurrent − indexlast_time − Pno_moving
and

rspeed = Cspeed ∗ speed
. The coefficients C and the penalties P are all positive, and oob stands for “out-of-bounds”. This
means we reward two things: high speed and more track finishing. In the meantime, we will
significantly penalize the “out-of-bound” and slightly penalize the “not moving” state. By this
definition, we know that a policy which can drive further through tracks with a higher speed can
achieve the highest reward. It is consistent with our goal, and smooth enough to start with a randomly
initialized policy. Specially, the Pno_moving is necessary to add. Otherwise, a “smart” learning
progress can converge to a seemed good policy where it carefully uses a slowest speed (possibly 0) to
stay on the track as long as possible to avoid an easy Poob.

3.2 Training Framework - SAC

We did research on different reinforce learning models, and decided to use Soft Actor-Critic (SAC)
as our main model [Haarnoja et al., 2018]. In our autonomous driving scenario, SAC gives a more
stable training results compared with other algorithms such as DDPG, A3C.

SAC incorporates ideas from both soft Q-learning and TD3. The most important feature of SAC
compared with other RL algorithms is entropy regularization. It tries to maximize a trade-off between
entropy and expected return, which is similar to the exploration-exploitation trade-off.

The key equation for SAC is:

J(π) = Eπ

[∑
t

r (st,at)− α log (π (at | st))

]
To maximize this objective function, we need to consider not only the expected return but also the
entropy term.

There are a lot of resources online with off-the-shelf models for us to use. We selected a library called
[Stable Baselines], which includes a set of improved implementations of RL algorithms based on
OpenAI baselines. We have successfully trained our car to complete the race without rushing out of
the track using our SAC model.

3.3 Distributed Training

In terms of training infrastructure, we wanted to be able to run multiple experiments in a distributed
fashion so that the agent could drive for a million miles and best learn how to find its way. However,
we needed for the project to be portable. Even though we used AWS for our experiments, we wanted
to be able to run them on different Cloud providers, locally, or even on private clusters.

Therefore, the simulator and trainer were dockerized. This allowed for them to be run on any
hardware, and enabled the use of kubernetes for their deployment. We implemented two modes of
deployment: multiple parameters-single environment, and single parameter-multiple environments.

3.3.1 Multiple Parameters - Single Environment

In this configuration, each set of parameters has its own independent simulator. The orchestrator -
in this case an EC2 instance (could be any properly configured virtual machine or local computer),
launches one training pod for each parameter. Each pod has its own independent trainer and simulator,
where simulations are run and logged. The docker images are pulled from AWS ECR, but again,
could be any docker registry.

The advantage of this configuration is that it allows to run multiple experiments for different param-
eters configurations. However, the speed at which they can run is capped by the speed of a single
simulator.
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Figure 5: Multiple Parameters - Single Environment architecture

Figure 6: Single Parameter - Multiple Environments

3.3.2 Single Parameter - Multiple Environments

In this configuration, one set of parameters has multiple simulators. The orchestrator launches one
training pod, a communication pod, and multiple simulators pulling the images from a docker registry.
Each simulator runs one iteration, and relays the results through a Redis publisher-subscriber channel
to the trainer. The trainer updates the model, relays the updated weights to the simulators, and the
process repeats. What is more, checkpoints are periodically saved to s3 for reproducibility.

The advantage of this configuration is that multiple simulations can be run simultaneously thus, not
being limited by the speed of a single trainer. However, at the expense of system complexity.

3.4 Online Visualization Monitoring Tool

The purpose of the analytic system is to provide a unified monitoring tool to analyse the training
process and evaluate how good the car is learning to drive. It is capable of displaying multiple training
instances and detailed information such as car path, rewards, speed, etc as shown in Figure 7. The
analytic tool mimics the functions of tensorboard and provide useful insights for future works.

The Roborace analytic system is made of three major components as illustrated in Figure 8:

3.4.1 Analytic Logger

The analytic logger is a simple class that logs important information from the observations. For each
episode of training, it accumulate observations in a buffer and flushes to a log file when the agent was
reset. The content of log files will used by the proxy server to provide structured data for front-end
user interface.
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Figure 7: User Interface of Roborace analytic system

Figure 8: Roborace analytic system structure

3.4.2 Proxy Server

The proxy server is a light weight python http server that runs on the node that produces the log files.
It processes and produces all the necessary data for the front end including track data, car paths, lap
time, rewards, speeds, etc.

3.4.3 User Interface

The front end interface is a web application developed using vue.js, echarts and d3.js, the front-end
interface could be launched anywhere and is able to connect to multiple nodes in the same time and
support multiple functions for analytic purposes. The front end is composed of the following major
pieces:

Control panel: The control panel locates at the left side of the panel and displays general information
of each training instances including training ID, node name, best lap time, and number of episode.
On the top of the control panel, we can input a list of remote servers that runs the training process, the
front end will automatically connect to the praoxy servers and load data. The data loading process
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is asynchronous and a green button will show up once loading is completed. We can also filter the
training process by setting a threshold of maximum observed rewards, which can help us identify
good training parameters.

Detail panel: On the right hand side of the user interface displays the detailed information of the
training process. It contains 4 visualizations:

(1) Average rewards: the average rewards graph is a line chart with x-axis represents num-
ber of episode and y-axis represents average rewards of that training episode.
(2) Time on track: the time on track graph is a line chart with x-axis represents number of episode
and y-axis encodes time spent on track during that episode.
(3) Average speed: similar to previous two, the average speed graph is a line chart with x-axis
represents number of episode and y-axis represents average observed speed during that episode.
(4) Trajectory graph: the trajectory graph is a canvas with track and trajectories of each episode
plotted on it. This graph is very useful and can help us understand the car’s behavior on the track.

Figure 9: User Interface after filtering Figure 10: Car path with speed

The detail panel also support filter by episode which provides a much more fine grained analytic as
shown in Figure 9. When we zoom in to show only one episode, the car path’s color will encode
its speed as shown in Figure 10, it can provide more detail about the car’s behavior and can help us
identify issues with the car.

4 Experiments

4.1 Basic Info with/without Trajectory Info

First we try to verify the trajectory information is necessary for training. Even with all features of the
car itself, it is almost impossible to train a RL model in practical. Theoretically speaking, the agent
can implicitly generate the track information by memorizing the points where it rush out of the track.
However, this requires tons of training episodes to be well learned by a neural network.

Thus we design a comparison experiment between these two settings, to prove trajectory information
is necessary, as shown in Table 3. In this experiment, the state in State1 are all features shown in
previous Table 2, while the State2/State3 are the same features with additional trajectory information,
which are 10 points along the human-expert/center path with rotated coordinates.

Table 3: Experiments with/without Trajectory Info.

State1 State2 State3

{Processed Feature} {Processed Features + Center Path} {Processed Features + Expert Path}
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4.2 Basic Info with/without Visual Info

Another meaningful experiment would be related with the importance of the visual information. If
we explicitly feed the trajectory to the racing car, it is much less challenging compared with direct
image information. Thus we would like to add an experiment, as shown in Table 4, to measure the
improvement caught simply by the image information, and whether we can drive based on only image
features.

Table 4: Experiments with/without Visual Info.

State1 State2 State3

{Processed Feature} {VAE Embeddings} {Processed Features + VAE Embeddings}

4.3 Neural Network Sizes

If things work well, we would like to explore the capability of our neural network model. In some
cases, wider and deeper models lead to a relatively better performance. Thus we compare different
sizes of neural networks, as shown in Table 5, to measure whether our model’s performance can be
further improved.

Table 5: Experiments with Different NN Sizes.

Exp4 NN Size Exp5 NN Size Exp6 NN Size

32×32×32 64×64×64 256×256

5 Results & Analysis

5.1 Basic Info with/without Trajectory Info

We first show the results whose features are only basic features, as in Figure 11. Obviously, the car
cannot even learn to achieve the first curve, with sufficient training episodes. This is consistent with
our hypothesis that this is essentially impossible in practical.

Figure 11: Basic Features Only.

Then we compare the performance between ones with center/expert trajectory info, as shown in
Figures 12 and 13. With the similar training time, we can tell the center info is easier to utilize by the
agent, but the expert line leads to a more sophisticated but shorter driving path eventually.
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Figure 12: Basic + Center Info. Figure 13: Basic + Expert Info.

5.2 Basic Info with/without Visual Info

In this part, we compare the state consisting of VAE only and the combination of Basic and VAE.
From the result, we observe that VAE embeddings are enough for learning to drive. However, if we
evaluate more carefully, we find that there exists many zig-zag behaviors during driving. This is
because the agent never knows its current speed and acceleration. Thus the car will prefer to drive
back to the center line as soon as possible, which is the zig-zag behavior.

Although the combined feature in Figure 15 is slower to learn, caused by higher dimensions of
features, the final results are more stable and smarter than following center lines, as in the left Figure
14.

Figure 14: VAE Embeddings. Figure 15: Basic + VAE Embeddings.

5.3 Neural Network Sizes

In this set of experiments, we explore how different layers and units affect the training process. From
the Figures 16, 17 and 18, we can see that 32× 32× 32 is slightly weaker than the other 2 during
training. However, this gap is not quite huge. Thus we can claim in this magnitude of features, the
NN sizes we use are pretty sufficient.

Figure 16: NN Size: 32*32*32. Figure 17: NN Size: 64*64*64. Figure 18: NN Size: 256*256.
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6 Conclusion & Future Work

In our journey of using reinforcement learning to race, we explored multiple domains including
AWS DeepRacer and Roborace. In the prior, we learned the fundamentals using a training pipeline
that was fully managed and abstracted by AWS. In the latter, we built the entire training pipeline
ourselves around Arrival’s highly realistic racing simulator used to test real, full-size autonomous
race cars. Our pipeline includes an OpenAI gym compliant reinforcement learning environment,
web-based visualization tools, containerization automated deployment, and the ability to train in a
distributed manner. We also developed baseline models in the Roborace environment which utilize
visual feature embeddings and other pose data and prove that reinforcement learning is a feasible
approach to realistic autonomous racing.

Here we propose several directions for future work. From a learning perspective, different learning
algorithms and experimental conditions could be introduced. Our baseline agents have only been
exposed to one race track under one set of physical parameters which severely limits its ability
generalize. We also believe that more sophisticated perception capabilities will be critical in the
future. Our environment could be improved on numerous fronts with the primary being integrated
it into a robotics stack that can actually interface with the real Roborace vehicle. Furthermore, we
believe that massive scale will be needed to get a vehicle on the real track.
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